Properties of polygons

Introduction

an equilateral triangle
an equi­lateral tri­angle with circum­circle and circum­radius in blue, in­circle and in­radius in orange, and altitude and height in grey

I've collected here lengths, areas and angles regarding regular polygons. (In a regular polygon, all angles are equal and all sides are the same length.)

General formulas

General formulas for regular n-gons (regular polygons with n sides), with each side of length one:

circumradius R = √(r2 + 1 / 4) = 1 / (2 × sin(180° / n))
inradius r = √(R2 − 1 / 4) = 1 / (2 × tan(180° / n))
area A = nr / 2 = n / (4 × tan(180° / n))
height for even n h = 2r
height for odd n h = R + r = tan((n − 1) / n × 90°) / 2
internal angles (n − 2) / n × 180°

Specific polygons

The table shows the name and exact values for some regular n-gons, with each side of length one:

n Name Circumradius R Inradius r Area A Height h
3 triangle √3 / 3 √3 / 6 √3 / 4 √3 / 2
4 square √2 / 2 1 / 2 1 1
5 pentagon √(50 + 10√5) / 10 √(25 + 10√5) / 10 √(25 + 10√5) / 4 √(5 + 2√5) / 2
6 hexagon 1 √3 / 2 3√3 / 2 √3
8 octagon √(4 + 2√2) / 2 = 1 / √(2 − √2) (1 + √2) / 2 2 + 2√2 1 + √2
10 decagon (1 + √5) / 2 √(5 + 2√5) / 2 5√(5 + 2√5) / 2 √(5 + 2√5)
12 dodecagon (√6 + √2) / 2 = √(2 + √3) (2 + √3) / 2 6 + 3√3 2 + √3
15 pentadecagon (√3 + √(5 + 2√5)) / 2 (√3 + √15 + √(10 + 2√5)) / 4 15r / 2 R + r
16 hexadecagon √(8 + 4√2 + 2√(20+14√2)) / 2
= 1 / √(2 − √(2 + √2))
(1 + √2 + √(4 + 2√2)) / 2 8r 2r
20 icosagon √(12 + 4√5 + 2√(50 + 22√5)) / 2
= 2 / √(8 − 2√(10 + 2√5))
(1 + √5 + √(5 + 2√5)) / 2 10r 2r
24 icositetragon √(16 + 10√2 + 8√3 + 6√6) / 2
= 1 / √(2 − √(2 + √3))
(2 + √2 + √3 + √6) / 2 12r 2r
30 triacontagon (2 + √5 + √(15 + 6√5)) / 2 (√15 + 3√3 + √(50 + 22√5)) / 4 15r 2r

Sources:

As triangles

a regular pentagon divided into five equal isosceles tri­angles

A regular n-gon can be split into n equal isosceles triangles which meet at the centre of the polygon (see image). The angle at the centre of the polygon is 360° / n. The other two angles are 180° minus that angle, divided by two, or (n − 2) / n × 90° each.

See also