Properties of polyhedra

Introduction

This is a list of distances, areas, volumes and angles regarding some regular convex polyhedra with all edges having a length of one. Notes:

Platonic solids

Five solids. Three types of faces: triangle, square, pentagon. One type of face per solid.

Name Faces Vertices Circumradius Midradius Inradius Surface area Volume
tetrahedron,
disphenoid,
digonal antiprism
4 4 √6 / 4 √2 / 4 √6 / 12 √3 √2 / 12
cube 6 8 √3 / 2 √2 / 2 1 / 2 6 1
octahedron 8 6 √2 / 2 1 / 2 √6 / 6 2√3 √2 / 3
dodecahedron 12 20 (√3 + √15) / 4 (3 + √5) / 4 √(250 + 110√5) / 20 3√(25 + 10√5) (15 + 7√5) / 4
icosahedron 20 12 √(10 + 2√5) / 4 (1 + √5) / 4 (3√3 + √15) / 12 5√3 (15 + 5√5) / 12

Sources:

Archimedean solids

13 solids. Six types of faces: triangle, square, pentagon, hexagon, octagon, decagon. Two or three types of faces per solid. No solid has both pentagons and octagons, both pentagons and decagons, or both octagons and decagons. Snub cube and snub dodecahedron are chiral.

Constants used in the table:

Names Faces Vertices Circumradius Midradius Inradius Surface area Volume
truncated tetrahedron 8 12 7√3 23√2 / 12
cuboctahedron,
triangular gyrobicupola
14 12 1 6 + 2√3 5√2 / 3
truncated cube 14 24 2(6 + 6√2 + √3) 7(3 + 2√2) / 3
truncated octahedron 14 24 6(1 + 2√3) 8√2
rhombicuboctahedron,
small rhombicuboctahedron
26 24 √(5 + 2√2) / 2 √(4 + 2√2) / 2
= 1 / √(2 − √2)
r3 = (3√3 + √6) / 6,
r4 = (1 + √2) / 2
18 + 2√3 (12 + 10√2) / 3
truncated cuboctahedron 26 48 12(2 + √2 + √3) 22 + 14√2
snub cube 38 24 6 + 8√3 (8t + 6) / (3√(2t2 − 6))
icosidodecahedron 32 30 (1 + √5) / 2 5√3 + 3√(25 + 10√5) (45 + 17√5) / 6
truncated dodecahedron 32 60 5(√3 + 6√(5 + 2√5)) 5(99 + 47√5) / 12
truncated icosahedron,
“soccer ball”
32 60 √(58 + 18√5) / 4 r5 = √(1250 + 410√5) / 20,
r6 = √(42 + 18√5) / 4
30√3 + 3√(25 + 10√5) (125 + 43√5) / 4
rhombicosidodecahedron 62 60 √(11 + 4√5) / 2 30 + 5√3 + 3√(25 + 10√5) (60 + 29√5) / 3
truncated icosidodecahedron 62 120 30(1 + √3 + √(5 + 2√5)) 95 + 50√5
snub dodecahedron 92 60 √((2 − ξ) / (1 − ξ)) / 2 1 / (2√(1 − ξ)) 20√3 + 3√(25 + 10√5) (5 + 5√5)√(18 + 6√5 + kSD(3 + 3√5 + kSD)) / (6√3)
+ (5 + 3√5)√(72 + (5 + √5)kSD(3 + 3√5 + kSD)) / (24√2)
≈ 37.6166500

Sources:

Johnson solids

(many still missing)

# Name Faces Vertices Circumradius Midradius Inradius Surface area Volume
J6 pentagonal rotunda 17 20 (45 + 17√5) / 12
J63 tridiminished icosahedron 8 9 (15 + 7√5) / 24

See also