List of numbers related to geometry
Introduction
If you come across a number and think it might be related to geometry, you may find the corresponding formula here. The approximate values are given to nine significant figures.
For polygons, these values are given:
- circumradius R
- inradius r
- height h (equals 2r for even n-gons and R+r for odd n-gons)
- area A
- internal angle in degrees and radians
Polygons on the list: regular polygons with sides of length one and 3–10, 12, 15, 16, 20, 24 or 30 sides.
For polyhedra, these values are given:
- circumradius R
- midradius ρ (small rho)
- inradius for all faces r or inradius for n-gonal faces rn
- surface area S
- volume V
Polyhedra on the list: the following regular convex polyhedra with edges of length one: Platonic solids, four Archimedean solids (those with 14 faces or less).
The list was generated with this Python program.
Related pages on this site: properties of polygons, properties of polyhedra.
The numbers
There are 116 formulas on this page, with a total of 133 descriptions.
| Approximate value | Formula | Descriptions |
|---|---|---|
| 0.117851130 | √2 / 12 | tetrahedron – V |
| 0.204124145 | √6 / 12 | tetrahedron – r |
| 0.288675135 | √3 / 6 | triangle – r |
| 0.353553391 | √2 / 4 | tetrahedron – ρ |
| 0.408248290 | √6 / 6 | octahedron – r |
| 0.433012702 | √3 / 4 | triangle – A |
| 0.471404521 | √2 / 3 | octahedron – V |
| 0.500000000 | 1 / 2 | square – r |
| cube – r | ||
| octahedron – ρ | ||
| 0.577350269 | √3 / 3 | triangle – R |
| 0.612372436 | √6 / 4 | tetrahedron – R |
| truncated tetrahedron – r6 | ||
| 0.688190960 | √(25 + 10√5) / 10 | pentagon – r |
| 0.707106781 | √2 / 2 | square – R |
| cube – ρ | ||
| octahedron – R | ||
| cuboctahedron – r4 | ||
| 0.755761314 | √3 × (3 + √5) / 12 | icosahedron – r |
| 0.809016994 | (1 + √5) / 4 | icosahedron – ρ |
| 0.816496581 | √6 / 3 | cuboctahedron – r3 |
| 0.850650808 | √(50 + 10√5) / 10 | pentagon – R |
| 0.866025404 | √3 / 2 | triangle – h |
| hexagon – r | ||
| cube – R | ||
| cuboctahedron – ρ | ||
| 0.951056516 | √(10 + 2√5) / 4 | icosahedron – R |
| 1.00000000 | 1 | square – h |
| square – A | ||
| hexagon – R | ||
| cube – V | ||
| cuboctahedron – R | ||
| 1.02062073 | 5√6 / 12 | truncated tetrahedron – r3 |
| 1.03826070 | 1 / (2 × tan(π / 7)) | heptagon – r |
| 1.04719755 | π / 3 | triangle – internal angle in radians |
| 1.06066017 | 3√2 / 4 | truncated tetrahedron – ρ |
| 1.11351636 | √(250 + 110√5) / 20 | dodecahedron – r |
| 1.15238244 | 1 / (2 × sin(π / 7)) | heptagon – R |
| 1.17260394 | √22 / 4 | truncated tetrahedron – R |
| 1.20710678 | (1 + √2) / 2 | octagon – r |
| truncated cube – r8 | ||
| 1.22474487 | √6 / 2 | truncated octahedron – r6 |
| 1.30656296 | 1 / √(2 − √2) | octagon – R |
| 1.30901699 | (3 + √5) / 4 | dodecahedron – ρ |
| 1.37373871 | 1 / (2 × tan(π / 9)) | nonagon – r |
| 1.40125854 | √3 × (1 + √5) / 4 | dodecahedron – R |
| 1.41421356 | √2 | truncated octahedron – r4 |
| 1.46190220 | 1 / (2 × sin(π / 9)) | nonagon – R |
| 1.50000000 | 3 / 2 | truncated octahedron – ρ |
| 1.53884177 | √(5 + 2√5) / 2 | pentagon – h |
| decagon – r | ||
| 1.57079633 | π / 2 | square – internal angle in radians |
| 1.58113883 | √10 / 2 | truncated octahedron – R |
| 1.61803399 | (1 + √5) / 2 | decagon – R |
| 1.68252198 | √(51 + 36√2) / 6 | truncated cube – r3 |
| 1.70710678 | (2 + √2) / 2 | truncated cube – ρ |
| 1.72047740 | √(25 + 10√5) / 4 | pentagon – A |
| 1.73205081 | √3 | hexagon – h |
| tetrahedron – S | ||
| 1.77882365 | √(7 + 4√2) / 2 | truncated cube – R |
| 1.86602540 | (2 + √3) / 2 | dodecagon – r |
| 1.88495559 | 3π / 5 | pentagon – internal angle in radians |
| 1.93185165 | √(2 + √3) | dodecagon – R |
| 2.09439510 | 2π / 3 | hexagon – internal angle in radians |
| 2.18169499 | 5 × (3 + √5) / 12 | icosahedron – V |
| 2.19064313 | tan(3π / 7) / 2 | heptagon – h |
| 2.24399475 | 5π / 7 | heptagon – internal angle in radians |
| 2.35231505 | (√3 + √15 + √(10 + 2√5)) / 4 | pentadecagon – r |
| 2.35619449 | 3π / 4 | octagon – internal angle in radians |
| 2.35702260 | 5√2 / 3 | cuboctahedron – V |
| 2.40486717 | (√3 + √(5 + 2√5)) / 2 | pentadecagon – R |
| 2.41421356 | 1 + √2 | octagon – h |
| 2.44346095 | 7π / 9 | nonagon – internal angle in radians |
| 2.51327412 | 4π / 5 | decagon – internal angle in radians |
| 2.51366975 | (1 + √2 + √(4 + 2√2)) / 2 | hexadecagon – r |
| 2.56291545 | 1 / √(2 − √(2 + √2)) | hexadecagon – R |
| 2.59807621 | 3√3 / 2 | hexagon – A |
| 2.61799388 | 5π / 6 | dodecagon – internal angle in radians |
| 2.71057599 | 23√2 / 12 | truncated tetrahedron – V |
| 2.72271363 | 13π / 15 | pentadecagon – internal angle in radians |
| 2.74889357 | 7π / 8 | hexadecagon – internal angle in radians |
| 2.82743339 | 9π / 10 | icosagon – internal angles in radians |
| 2.83564091 | tan(4π / 9) / 2 | nonagon – h |
| 2.87979327 | 11π / 12 | icositetragon – internal angles in radians |
| 2.93215314 | 14π / 15 | triacontagon – internal angles in radians |
| 3.07768354 | √(5 + 2√5) | decagon – h |
| 3.15687576 | (1 + √5 + √(5 + 2√5)) / 2 | icosagon – r |
| 3.19622661 | 2 / √(8 − 2√(10 + 2√5)) | icosagon – R |
| 3.46410162 | 2√3 | octahedron – S |
| 3.63391244 | 7 / (4 × tan(π / 7)) | heptagon – A |
| 3.73205081 | 2 + √3 | dodecagon – h |
| 3.79787706 | (2 + √2 + √3 + √6) / 2 | icositetragon – r |
| 3.83064879 | 1 / √(2 − √(2 + √3)) | icositetragon – R |
| 4.75718223 | (3√3 + √15 + √(50 + 22√5)) / 4 | pentadecagon – h |
| triacontagon – r | ||
| 4.78338612 | (2 + √5 + √(15 + 6√5)) / 2 | triacontagon – R |
| 4.82842712 | 2 + 2√2 | octagon – A |
| 5.02733949 | (1 + √2 + √(4 + 2√2)) | hexadecagon – h |
| 6.00000000 | 6 | cube – S |
| 6.18182419 | 9 / (4 × tan(π / 9)) | nonagon – A |
| 6.31375151 | (1 + √5 + √(5 + 2√5)) | icosagon – h |
| 7.59575411 | (2 + √2 + √3 + √6) | icositetragon – h |
| 7.66311896 | (15 + 7√5) / 4 | dodecahedron – V |
| 7.69420884 | 5√(5 + 2√5) / 2 | decagon – A |
| 8.66025404 | 5√3 | icosahedron – S |
| 9.46410162 | 6 + 2√3 | cuboctahedron – S |
| 9.51436445 | (√15 + 3√3 + √(50 + 22√5)) / 2 | triacontagon – h |
| 11.1961524 | 6 + 3√3 | dodecagon – A |
| 11.3137085 | 8√2 | truncated octahedron – V |
| 12.1243557 | 7√3 | truncated tetrahedron – S |
| 13.5996633 | 7 × (3 + 2√2) / 3 | truncated cube – V |
| 17.6423629 | 15 × (√3 + √15 + √(10 + 2√5)) / 8 | pentadecagon – A |
| 20.1093580 | 4 × (1 + √2 + √(4 + 2√2)) | hexadecagon – A |
| 20.6457288 | 3√(25 + 10√5) | dodecahedron – S |
| 26.7846097 | 6 × (1 + 2√3) | truncated octahedron – S |
| 31.5687576 | 5 × (1 + √5 + √(5 + 2√5)) | icosagon – A |
| 32.4346644 | 2 × (6 + 6√2 + √3) | truncated cube – S |
| 45.5745247 | 6 × (2 + √2 + √3 + √6) | icositetragon – A |
| 60.0000000 | 60 | triangle – internal angle in degrees |
| 71.3577334 | 15 × (√15 + 3√3 + √(50 + 22√5)) / 4 | triacontagon – A |
| 90.0000000 | 90 | square – internal angle in degrees |
| 108.000000 | 108 | pentagon – internal angle in degrees |
| 120.000000 | 120 | hexagon – internal angle in degrees |
| 128.571429 | 900 / 7 | heptagon – internal angle in degrees |
| 135.000000 | 135 | octagon – internal angle in degrees |
| 140.000000 | 140 | nonagon – internal angle in degrees |
| 144.000000 | 144 | decagon – internal angle in degrees |
| 150.000000 | 150 | dodecagon – internal angle in degrees |
| 156.000000 | 156 | pentadecagon – internal angle in degrees |
| 157.500000 | 315 / 2 | hexadecagon – internal angle in degrees |
| 162.000000 | 162 | icosagon – internal angles in degrees |
| 165.000000 | 165 | icositetragon – internal angles in degrees |
| 168.000000 | 168 | triacontagon – internal angles in degrees |