Exact trigonometric values
Introduction
Exact values of some trigonometric functions. They are sorted first by function, then by the length of the formula, then by angle. The formulas should be readable in a text browser.
Note that on this page, the “√” operator has higher precedence (binds tighter) than binary operators. E.g. “√5+1” means “(√5)+1”, not “√(5+1)”.
Sines and cosines
The table contains these angles between 0°…90°: multiples of 3°, multiples of 3.75° (15°/4), multiples of 5.625° (45°/8).
Note that sin(α) = cos(90°−α) and cos(α) = sin(90°−α).
Sine of | Cosine of | Formula |
---|---|---|
0° | 90° | 0 |
90° | 0° | 1 |
30° | 60° | 1 / 2 |
45° | 45° | √2 / 2 |
60° | 30° | √3 / 2 |
18° | 72° | (−1 + √5) / 4 |
54° | 36° | ( 1 + √5) / 4 |
15° | 75° | (√6 − √2) / 4 |
75° | 15° | (√6 + √2) / 4 |
22.5° | 67.5° | √(2 − √2) / 2 |
67.5° | 22.5° | √(2 + √2) / 2 |
36° | 54° | √(2 × (5 − √5)) / 4 |
72° | 18° | √(2 × (5 + √5)) / 4 |
7.5° | 82.5° | √(2 − √(2 + √3)) / 2 |
11.25° | 78.75° | √(2 − √(2 + √2)) / 2 |
33.75° | 56.25° | √(2 − √(2 − √2)) / 2 |
37.5° | 52.5° | √(2 − √(2 − √3)) / 2 |
52.5° | 37.5° | √(2 + √(2 − √3)) / 2 |
56.25° | 33.75° | √(2 + √(2 − √2)) / 2 |
78.75° | 11.25° | √(2 + √(2 + √2)) / 2 |
82.5° | 7.5° | √(2 + √(2 + √3)) / 2 |
9° | 81° | √(8 − 2√(2 × (5 + √5))) / 4 |
27° | 63° | √(8 − 2√(2 × (5 − √5))) / 4 |
63° | 27° | √(8 + 2√(2 × (5 − √5))) / 4 |
81° | 9° | √(8 + 2√(2 × (5 + √5))) / 4 |
3.75° | 86.25° | √(2 - √(2 + √(2 + √3))) / 2 |
5.625° | 84.375° | √(2 − √(2 + √(2 + √2))) / 2 |
16.875° | 73.125° | √(2 − √(2 + √(2 − √2))) / 2 |
18.75° | 71.25° | √(2 - √(2 + √(2 - √3))) / 2 |
26.25° | 63.75° | √(2 - √(2 - √(2 - √3))) / 2 |
28.125° | 61.875° | √(2 − √(2 − √(2 − √2))) / 2 |
39.375° | 50.625° | √(2 − √(2 − √(2 + √2))) / 2 |
41.25° | 48.75° | √(2 - √(2 - √(2 + √3))) / 2 |
48.75° | 41.25° | √(2 + √(2 - √(2 + √3))) / 2 |
50.625° | 39.375° | √(2 + √(2 − √(2 + √2))) / 2 |
61.875° | 28.125° | √(2 + √(2 − √(2 − √2))) / 2 |
63.75° | 26.25° | √(2 + √(2 - √(2 - √3))) / 2 |
71.25° | 18.75° | √(2 + √(2 + √(2 - √3))) / 2 |
73.125° | 16.875° | √(2 + √(2 + √(2 − √2))) / 2 |
84.375° | 5.625° | √(2 + √(2 + √(2 + √2))) / 2 |
86.25° | 3.75° | √(2 + √(2 + √(2 + √3))) / 2 |
6° | 84° | (−1 − √5 + √(6 × (5 − √5))) / 8 |
42° | 48° | ( 1 − √5 + √(6 × (5 + √5))) / 8 |
66° | 24° | ( 1 + √5 + √(6 × (5 − √5))) / 8 |
78° | 12° | (−1 + √5 + √(6 × (5 + √5))) / 8 |
12° | 78° | √(7 − √5 − √(6 × (5 − √5))) / 4 |
24° | 66° | √(7 + √5 − √(6 × (5 + √5))) / 4 |
48° | 42° | √(7 − √5 + √(6 × (5 − √5))) / 4 |
84° | 6° | √(7 + √5 + √(6 × (5 + √5))) / 4 |
3° | 87° | √(8 − √3 − √15 − √(2 × (5 − √5))) / 4 |
21° | 69° | √(8 + √3 − √15 − √(2 × (5 + √5))) / 4 |
33° | 57° | √(8 − √3 − √15 + √(2 × (5 − √5))) / 4 |
39° | 51° | √(8 − √3 + √15 − √(2 × (5 + √5))) / 4 |
51° | 39° | √(8 + √3 − √15 + √(2 × (5 + √5))) / 4 |
57° | 33° | √(8 + √3 + √15 − √(5 × (2 − √5))) / 4 |
69° | 21° | √(8 − √3 + √15 + √(2 × (5 + √5))) / 4 |
87° | 3° | √(8 + √3 + √15 + √(2 × (5 − √5))) / 4 |
Tangents and cotangents
The table contains these angles between 0°…90°: multiples of 6°, multiples of 7.5° (15/2), multiples of 9°, multiples of 11.25° (45/4).
Note that tan(α) = cot(90°−α) and cot(α) = tan(90°−α).
Tangent of | Cotangent of | Formula |
---|---|---|
0° | 90° | 0 |
45° | 45° | 1 |
60° | 30° | √3 |
30° | 60° | √3 / 3 |
15° | 75° | 2 − √3 |
22.5° | 67.5° | −1 + √2 |
67.5° | 22.5° | 1 + √2 |
75° | 15° | 2 + √3 |
36° | 54° | √(5 − 2√5) |
72° | 18° | √(5 + 2√5) |
18° | 72° | √(5 × (5 − 2√5)) / 5 |
54° | 36° | √(5 × (5 + 2√5)) / 5 |
7.5° | 82.5° | −2 + √6 − √3 + √2 |
37.5° | 52.5° | −2 + √6 + √3 − √2 |
52.5° | 37.5° | 2 + √6 − √3 − √2 |
82.5° | 7.5° | 2 + √6 + √3 + √2 |
9° | 81° | 1 + √5 − √(5 + 2√5) |
27° | 63° | −1 + √5 − √(5 − 2√5) |
63° | 27° | −1 + √5 + √(5 − 2√5) |
81° | 9° | 1 + √5 + √(5 + 2√5) |
11.25° | 78.75° | −1 − √2 + √(2 × (2 + √2)) |
33.75° | 56.25° | 1 − √2 + √(2 × (2 − √2)) |
56.25° | 33.75° | −1 + √2 + √(2 × (2 − √2)) |
78.75° | 11.25° | 1 + √2 + √(2 × (2 + √2)) |
6° | 84° | √( 7 − 2√5 − 2√(3 × ( 5 − 2√5))) |
12° | 78° | √(23 − 10√5 − 2√(3 × (85 − 38√5))) |
24° | 66° | √(23 + 10√5 − 2√(3 × (85 + 38√5))) |
42° | 48° | √( 7 + 2√5 − 2√(3 × ( 5 + 2√5))) |
48° | 42° | √(23 − 10√5 + 2√(3 × (85 − 38√5))) |
66° | 24° | √( 7 − 2√5 + 2√(3 × ( 5 − 2√5))) |
78° | 12° | √( 7 + 2√5 + 2√(3 × ( 5 + 2√5))) |
84° | 6° | √(23 + 10√5 + 2√(3 × (85 + 38√5))) |
Sources
- Wikipedia: Exact trigonometric values
- Wikimedia Commons: Exact trigonometric table for multiples of 3°
- Exact Values of the Sine and Cosine Functions in Increments of 3 degrees (archived)
- Exact Trigonometric Function Values
- Wolfram Alpha – looks like it won't show the exact values for some formulas unless you write the angle as a fraction: e.g. “tan(Divide[6°,1])” works but “tan(6°)” won't