Simplifying mathematical expressions

Introduction

On this page, there are examples of simplifying mathematical expressions by moving square roots from the denominator to the numerator.

In the formulas, a, b and c are real numbers.

Involving the golden ratio

The golden ratio (phi): φ = (1 + √5) / 2 ≈ 1.618

1 / φ = φ − 1
1 / (φ + 1) = 2 − φ
1 / (φ − 1) = φ
1 / (φ + a) = (a + 1 − φ) / (a(a + 1) − 1)
1 / (φ + 1 / a) = a(a(φ − 1) − 1) / (a(a − 1) − 1)
1 / (φ + a / b) = b(a + b(1 − φ)) / (a2 + abb2)
1 / (aφ) = (φ − 1) / a
1 / (aφ + 1) = (a(φ − 1) − 1) / (a(a − 1) − 1)
1 / (aφ − 1) = (a(φ − 1) + 1) / (a(a + 1) − 1)
1 / (aφ + b) = (a(φ − 1) − b) / (a2abb2)
1 / (aφ + 1 / b) = b(ab(φ − 1) − 1) / (ab(ab − 1) − 1)
1 / (aφ + b / c) = c(ac(φ − 1) − b) / (a2c2b2abc)

Example: 1 / (3φ + 5/7) = 7(21φ − 26) / 311

Logarithms

loga(a) = 1
loga(bc) = loga(b) + loga(c)
loga(ab) = 1 + loga(b)
loga(b / c) = loga(b) − loga(c)
loga(a / b) = 1 − loga(b)
loga(bc) = loga(b) × c
loga(ab) = b
loga(abcd) = b + loga(c) × d
loga(√b) = loga(b) / 2
loga(∛b) = loga(b) / 3
loga(b) / loga(c) = logc(b)
logab(a) = 1 − logab(b)
logab(ac) = 1 − logab(b) + logab(c)

Other expressions

1 / a = a / a
1 / (a + √b) = (a − √b) / (a2b)
1 / (a − √b) = (a + √b) / (a2b)
1 / (1 / a + √b) = a(1 − ab) / (1 − a2b)
1 / (1 / a − √b) = a(1 + ab) / (1 − a2b)
1 / (a / b + √c) = b(abc) / (a2b2c)
1 / (a / b − √c) = b(a + bc) / (a2b2c)
1 / (√a + √b) = (√a − √b) / (ab)
1 / (√a − √b) = (√a + √b) / (ab)

Example: 1 / (3 + √7) = (3 − √7) / 2