Reciprocals of some mathematical expressions
Introduction
This page is about simplifying the reciprocals of some mathematical expressions by moving square roots from the denominator to the numerator.
Reciprocals involving the golden ratio
The golden ratio (phi): φ = (1 + √5) / 2 ≈ 1.618
| 1 / | (aφ + b) | = | (a(φ − 1) − b) | / | (a2 − ab − b2) |
| 1 / | (aφ + 1) | = | (a(φ − 1) − 1) | / | (a2 − a − 1) |
| 1 / | (φ + a) | = | (a + 1 − φ) | / | (a2 + a − 1) |
| 1 / | φ | = | φ − 1 | ||
| 1 / | (φ + 1) | = | 2 − φ | ||
Example: 1 / (5φ + 2) = (5φ − 7) / 11
Other reciprocals
| 1 / | √a | = | √a | / | a |
| 1 / | (a + √b) | = | (a − √b) | / | (a2 − b) |
| 1 / | (a − √b) | = | (a + √b) | / | (a2 − b) |
| 1 / | (√a + √b) | = | (√a − √b) | / | (a − b) |
| 1 / | (√a − √b) | = | (√a + √b) | / | (a − b) |
Example: 1 / (3 + √7) = (3 − √7) / 2