Properties of polygons and polyhedra

Introduction

This is a list of distances, areas and angles regarding some 2D and 3D shapes.

Polygons

an equilateral triangle
an equilateral triangle; circumcircle and circumradius in blue; incircle and inradius in orange
a regular pentagon
a regular pentagon divided into five equal isosceles triangles

The table shows the name, circumradius R and inradius r for various regular polygons (all angles equal) with n sides, each of length one. The first row after the headers (n=any) has general formulas that work with any such polygon.

n Name Circumradius Inradius
any n-gon 1 / (2 × sin(180° / n)) 1 / (2 × tan(180° / n))
3 triangle √3 / 3 √3 / 6
4 square √2 / 2 1 / 2
5 pentagon √((5 + √5) / 10) √(25 + 10√5) / 10
6 hexagon 1 √3 / 2
8 octagon 1 / √(2 − √2) (1 + √2) / 2
10 decagon (1 + √5) / 2 √(5 + 2√5) / 2
12 dodecagon (√6 + √2) / 2 (2 + √3) / 2
15 penta(kai)decagon (√3 + √(5 + 2√5)) / 2 √(7 + 2√5 + 2√(15 + 6√5)) / 2
16 hexa(kai)decagon 1 / √(2 − √(2 + √2)) (1 + √2 + √(4 + 2√2)) / 2
20 icosagon 2 / √(8 − √(40 + 8√5)) (1 + √5 + √(5 + 2√5)) / 2
24 icosi(kai)tetragon 1 / √(2 − √(2 + √3)) (2 + √2 + √3 + √6) / 2
30 triacontagon (2 + √5 + √(15 + 6√5)) / 2 1 / (2√(7 − 2√5 − 2√(15 − 6√5)))
32 triaconta(kai)digon 1 / √(2 − √(2 + √(2 + √2))) √(1 / (2 − √(2 + √(2 + √2))) − 1 / 4)
48 tetraconta(kai)octagon 1 / √(2 − √(2 + √(2 + √3))) √(1 / (2 − √(2 + √(2 + √3))) − 1 / 4)
60 hexacontagon 2 / √(8 − √3 − √15 − √(10 − 2√5)) √(4 / (8 − √3 − √15 − √(10 − 2√5)) − 1 / 4)

How R and r depend on each other:

Other properties of regular n-gons:

A regular n-gon can be split into n similar isosceles triangles which meet at the centre of the polygon (see image); each triangle has:

Polyhedra

Some regular polyhedra with edge length one.

Faces: e.g. 8×3+6×4 means 8 triangles and 6 squares. Circumradius, midradius and inradius: radius of circumsphere, midsphere and insphere, respectively; they touch each vertex, edge and face once, respectively.

Name Faces Circumradius Midradius Inradius
tetrahedron 4×3 √6 / 4 √2 / 4 √6 / 12
octahedron 8×3 √2 / 2 1 / 2 √6 / 6
dodecahedron 12×5 (√3 + √15) / 4 (3 + √5) / 4 √((25 + 11√5) / 10) / 2
icosahedron 20×3 √((5 + √5) / 2) / 2 (1 + √5) / 4 (3√3 + √15) / 12

Sources

See also