Properties of polyhedra

Introduction

This is a list of distances, areas, volumes and angles regarding some regular convex polyhedra with all edges having a length of one. Notes:

Platonic solids

Five solids. Three types of faces: triangle, square, pentagon. One type of face per solid.

Name Faces Vertices Circumradius Midradius Inradius Surface area Volume Dihedral angle
tetrahedron,
triangular pyramid,
disphenoid,
digonal antiprism
4T 4 √6 / 4 √2 / 4 √6 / 12 √3 √2 / 12 arccos(1 / 3)
= arctan(2√2)
cube,
square prism
6S 8 √3 / 2 √2 / 2 1 / 2 6 1 90°
octahedron,
square bipyramid,
triangular antiprism
8T 6 √2 / 2 1 / 2 √6 / 6 2√3 √2 / 3 arccos(−1 / 3)
dodecahedron 12P 20 √3 × (1 + √5) / 4 (3 + √5) / 4 √(250 + 110√5) / 20 3√(25 + 10√5) (15 + 7√5) / 4 arccos(−√(5) / 5)
icosahedron 20T 12 √(10 + 2√5) / 4 (1 + √5) / 4 √3 × (3 + √5) / 12 5√3 5(3 + √5) / 12 arccos(−√(5) / 3)

Sources:

Archimedean solids

13 solids. Two or three types of faces per solid. No solid has both pentagons and octagons, both pentagons and decagons, or both octagons and decagons. Snub cube and snub dodecahedron are chiral (different from their mirror images).

Constants used in the table:

Names Faces Vertices Circumradius Midradius Inradius Surface area Volume
truncated tetrahedron 4T+4H 12 √22 / 4 3√2 / 4 r3 = 5√6 / 12,
r6 = √6 / 4
7√3 23√2 / 12
cuboctahedron,
triangular gyrobicupola
8T+6S 12 1 √3 / 2 r3 = √6 / 3,
r4 = √2 / 2
6 + 2√3 5√2 / 3
truncated cube 8T+6O 24 √(7 + 4√2) / 2 (2 + √2) / 2 r3 = √(51 + 36√2) / 6,
r8 = (1 + √2) / 2
2(6 + 6√2 + √3) 7(3 + 2√2) / 3
truncated octahedron 6S+8H 24 √10 / 2 3 / 2 r4 = √2,
r6 = √6 / 2
6(1 + 2√3) 8√2
(small) rhombicuboctahedron 8T+18S 24 √(5 + 2√2) / 2 √(4 + 2√2) / 2
= 1 / √(2 − √2)
r3 = (3√3 + √6) / 6,
r4 = (1 + √2) / 2
18 + 2√3 (12 + 10√2) / 3
(rhombi)truncated cuboctahedron,
great rhombicuboctahedron
12S+8H
+6O
48 √(13 + 6√2) / 2 √(12 + 6√2) / 2 r4 = (3 + √2) / 2,
r6 = (√6 + √3) / 2,
r8 = (1 + 2√2) / 2
12(2 + √2 + √3) 22 + 14√2
snub cube 32T+6S 24 √((3 − t) / (2 − t)) / 2 1 / (2√(2 − t)) r3 = √((t + 1) / (6 − 3t)) / 2,
r4 = √((1 − t) / (t − 2)) / 2
6 + 8√3 (8t + 6) / (3√(2t2 − 6))
icosidodecahedron 20T+12P 30 (1 + √5) / 2 √(5 + 2√5) / 2 r3 = √(42 + 18√5) / 6,
r5 = √(25 + 10√5) / 5
5√3 + 3√(25 + 10√5) (45 + 17√5) / 6
truncated dodecahedron 20T+12D 60 √(74 + 30√5) / 4 (5 + 3√5) / 4 r3 = √3 × (9 + 5√5) / 12,
r10 = √(50 + 22√5) / 4
5(√3 + 6√(5 + 2√5)) 5(99 + 47√5) / 12
truncated icosahedron,
“soccer ball”
12P+20H 60 √(58 + 18√5) / 4 (3 + 3√5) / 4 r5 = √(1250 + 410√5) / 20,
r6 = √(42 + 18√5) / 4
30√3 + 3√(25 + 10√5) (125 + 43√5) / 4
(small) rhombicosidodecahedron 20T+30S
+12P
60 √(11 + 4√5) / 2 √(10 + 4√5) / 2 r3 = (3√3 + 2√15) / 6,
r4 = (2 + √5) / 2,
r5 = 3√(25 + 10√5) / 10
30 + 5√3 + 3√(25 + 10√5) (60 + 29√5) / 3
(rhombi)truncated icosidodecahedron,
great rhombicosidodecahedron
30S+20H
+12D
120 √(31 + 12√5) / 2 √(30 + 12√5) / 2 r4 = (3 + 2√5) / 2,
r6 = (2√3 + √15) / 2,
r10 = √(25 + 10√5) / 2
30(1 + √3 + √(5 + 2√5)) 95 + 50√5
snub dodecahedron 80T+12P 60 √((2 − u) / (1 − u)) / 2 1 / (2√(1 − u)) r3 = vφ√(3(v(v + φ) + 1)) / 6
≈ 2.07708966,
r5 = √(20(5(v + 1 / v)(1 + 2φ) + (12 + 11φ))) / 20
≈ 1.98091595
20√3 + 3√(25 + 10√5) (5 + 5√5)√(18 + 6√5 + w(3 + 3√5 + w)) / (6√3)
+ (5 + 3√5)√(72 + (5 + √5)w(3 + 3√5 + w)) / (24√2)
≈ 37.6166500

Sources:

Johnson solids

(many still missing; there are 92 non-uniform Johnson solids in all)

# Name Faces Vertices Circumradius Surface area Volume
J1 square pyramid 4T+1S 5 √2 / 2 1 + √3 √2 / 6
J2 pentagonal pyramid 5T+1P 6 √(10 + 2√5) / 4 √(10(10 + √5 + √(15(5 + 2√5)))) / 4 (5 + √5) / 24
J3 triangular cupola 4T+3S
+1H
9 1 3 + 5√3 / 2 5√2 / 6
J4 square cupola 4T+5S
+1O
12 √(5 + 2√2) / 2 7 + 2√2 + √3 1 + 2√2 / 3
J5 pentagonal cupola 5T+5S
+1P+1D
15 √(11 + 4√5) / 2 (5(4 + √3) + √(5(145 + 62√5))) / 4 (5 + 4√5) / 6
J6 pentagonal rotunda 10T+6P
+1D
20 (1 + √5) / 2 (5√3 + √(10(65 + 29√5))) / 2 (45 + 17√5) / 12
J12 triangular bipyramid,
triangular tegum
6T 5 3√3 / 2 √2 / 6
J13 pentagonal bipyramid,
pentagonal tegum
10T 7 5√3 / 2 (5 + √5) / 12
J63 tridiminished icosahedron 5T+3P 9 √(10 + 2√5) / 4 (5√3 + 3√(5(5 + 2√5))) / 4 (15 + 7√5) / 24
J80 parabidiminished
rhomb­icosidodecahedron
10T+20S
+10P+2D
50 √(11 + 4√5) / 2 5(8 + √3 + √(85 + 38√5)) / 2 5(11 + 5√5) / 3
J84 snub disphenoid 12T 8 3√3 ~0.85949
J86 sphenocorona 12T+2S 10 2 + 3√3 √(2(2 + 3√6 + 2√(13 + 3√6))) / 4
J88 sphenomegacorona 16T+2S 12 2 + 4√3 ~1.948
J89 hebespheno­megacorona 18T+3S 14 3 + 9√3 / 2 ~2.9129
J90 disphenocingulum 20T+4S 16 4 + 5√3 ~3.7776
J91 bilunabirotunda 8T+2S+4P 14 2 + 2√3 + √(5(5 + 2√5)) (17 + 9√5) / 12
J92 triangular
hebesphenorotunda
13T+3S
+3P+1H
18 3 + √(6(218 + 15√5 + 19√(15(5 + 2√5)))) / 4 (15 + 7√5) / 6

Inradii:

Sources:

(TODO: add these values to geometrymagic.html)

See also