My integer sequences. These are not yet on the On-Line Encyclopedia of Internet Sequences (OEIS). I haven't bothered to send them there, but you may do so; you do not need permission from me and you do not have to mention me. ------------------------------------------------------------------------------- Positive integers k such that the octal expansions of k and 2k are anagrams: 21, 168, 189, 546, 644, 819, 1057, 1092, 1344, 1365, 1512, 1533, 1638, ... Example: 21 = 0o25; 2 * 21 = 0o52. Note: octal equivalent of A023086. Python program: print([ k for k in range(1, 10**4) if sorted(format(k, "o")) == sorted(format(2 * k, "o")) ]) Positive integers k such that the octal expansions of k and 3k are anagrams: 819, 882, 1134, 6552, 6643, 6916, 7042, 7056, 7154, 8050, 8302, 9072, ... Example: 819 = 0o1463; 3 * 819 = 0o4631. Note: octal equivalent of A023087. Python program: print([ k for k in range(1, 10**4) if sorted(format(k, "o")) == sorted(format(3 * k, "o")) ]) Positive integers k such that the octal expansions of k and 4k are anagrams: 532, 546, 819, 4116, 4130, 4228, 4256, 4326, 4354, 4368, 4508, ... Example: 532 = 0o1024; 4 * 532 = 0o4120. Note: octal equivalent of A023088. Python program: print([ k for k in range(1, 10**4) if sorted(format(k, "o")) == sorted(format(4 * k, "o")) ]) Positive integers k such that the octal expansions of k and 5k are anagrams: 525, 630, 735, 4109, 4200, 4725, 5033, 5040, 5110, 5558, 5880, 5887, ... Example: 525 = 0o1015; 5 * 525 = 0o5101. Note: octal equivalent of A023089. Python program: print([ k for k in range(1, 10**4) if sorted(format(k, "o")) == sorted(format(5 * k, "o")) ]) Positive integers k such that the octal expansions of k and 6k are anagrams: 33558, 39102, 39319, 262934, 268310, 268464, 273420, 273805, 285068, ... Example: 33558 = 0o101426; 6 * 33558 = 0o611204. Note: octal equivalent of A023090. Python program: print([ k for k in range(1, 10**6) if sorted(format(k, "o")) == sorted(format(6 * k, "o")) ]) Positive integers k such that the octal expansions of k and 7k are anagrams: 567, 4151, 4319, 4536, 4543, 4599, 32823, 32991, 33208, 33215, ... Example: 567 = 0o1067; 7 * 567 = 0o7601. Notes: octal equivalent of A023091. Python program: print([ k for k in range(1, 10**6) if sorted(format(k, "o")) == sorted(format(7 * k, "o")) ]) a(n) is the smallest positive integer k such that the octal expansions of k and nk are anagrams: 1, 21, 819, 532, 525, 33558, 567 Example: a(3) = 819 because 819 = 0o1463 and 3 * 819 = 0o4631. Notes: finite; octal equivalent of A133220. Python program: for n in range(1, 7 + 1): for k in range(1, 10**6): if sorted(format(k, "o")) == sorted(format(n * k, "o")): print(k) break Numbers k whose octal expansion can be permuted to produce the octal expansion of a multiple of k: 21, 168, 189, 525, 532, 546, 567, 630, 644, 735, 819, 882, ... Example: 21 = 0o25; 2 * 21 = 0o52. Note: octal equivalent of A245680. Python program: print([ k for k in range(1, 1000) if any( sorted(format(k, "o")) == sorted(format(m * k, "o")) for m in range(2, 7 + 1) ) ]) ------------------------------------------------------------------------------- Back to Qalle's home page: https://qalle.neocities.org