My non-serious integer sequences
Introduction
Integer sequences created by me that would not make it to the On-Line Encyclopedia of Integer Sequences (OEIS). All of these sequence will change over time (that's the joke).
The Python programs require the file stripped.gz
from the OEIS.
Date of stripped.gz
used for creating these sequences: 4 September 2025 or newer.
You can also download all the Python programs.
The sequences
The uninteresting numbers
20990, 22978, 23543, 23735, 24085, 24159, 24555, 26301, 26673, 26708, 27266, 27765, 27815, 27988, 28330, 28353, 28427, 28466, 28869, 28946
The smallest positive integers that do not occur in any OEIS sequence (in stripped.gz
).
This sequence is infinite. Only the first 20 terms are shown.
Greater of uninteresting number pairs
719, 753, 774, 787, 817, 823, 830, 830, 830, 835, 835, 843, 845, 850, 850, 853, 854, 860, 861, 863
Get pairs of positive integers (m, n) such that m < n and no OEIS sequence (in stripped.gz
)
contains both m and n. Sort the pairs first by n, then by m. This sequence has the values of n.
This sequence is infinite. Only the first 20 terms are shown.
Lesser of uninteresting number pairs
556, 266, 573, 536, 540, 690, 613, 669, 713, 526, 574, 476, 552, 419, 764, 722, 712, 443, 677, 462
Get pairs of positive integers (m, n) such that m < n and no OEIS sequence (in stripped.gz
)
contains both m and n. Sort the pairs first by n, then by m. This sequence has the values of m.
This sequence is infinite. Only the first 20 terms are shown.
The uninteresting consecutive numbers
20990, 1319, 988, 675, 574, 573, 388, 383, 382, 381, 380, 379, 378, 296, 295, 294, 255, 254, 253, 252
The n'th term is the smallest positive integer such that no OEIS sequence (in stripped.gz
) contains all n consecutive integers starting from it.
Example: the third term is 988 because 988, 989 and 990 are the smallest three consecutive positive integers such that no OEIS sequence contains all of them.
This sequence is infinite. Only the first 20 terms are shown.
The uninteresting numbers by index
395, 692, 1286, 1658, 3063, 3063, 3063, 5575, 5707, 6614, 7402, 7871, 9342, 9342, 9342, 9342, 9342, 12129, 12802, 12802, 13551, 13864, 13864, 15369, 15462, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 19150, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990
The n'th term is the smallest positive integer that does not occur among the first n terms of any OEIS sequence (in stripped.gz
).
Example: the second term is 692 because it is the smallest positive integer that does not occur before the third term in any OEIS sequence.
This sequence is finite. The complete sequence is shown.
Numbers more interesting than the preceding one
15, 16, 20, 23, 24, 27, 28, 30, 35, 36, 40, 45, 47, 48, 52, 53, 55, 56, 59, 60, 63, 64, 66, 70, 71, 72, 75, 78, 79, 80, 83, 84, 88, 89, 90, 96, 99, 100, 103, 105, 107, 108, 112, 116, 117, 119, 120, 124, 125, 126, 127, 128, 130, 131, 135, 136, 137, 139, 140, 143, 144, 147, 148, 149, 151, 156, 157, 159, 160, 162, 163, 165, 167, 168, 173, 175, 176, 178, 179, 180, 184, 186, 189, 191, 192, 195, 196, 197, 199, 204, 207, 208, 210, 214, 216, 220, 222, 223, 225, 227, 229, 231, 233, 238, 239, 240, 243, 245, 248, 250, 251, 252, 255, 256, 260, 263, 269, 271, 275, 276, 277, 279, 280, 281, 283, 285, 286, 288, 292, 293, 296, 297, 299, 300, 303, 304, 306, 307, 310, 311, 313, 315, 317, 319, 320, 323, 324, 328, 329, 330, 331, 333, 335, 336, 337, 340, 341, 343, 347, 349, 351, 353, 355, 357, 359, 360, 363, 364, 367, 369, 371, 372, 373, 375, 377, 378, 379, 383, 384, 389, 392, 395, 396, 397, 399, 400, 403, 405, 408, 409, 413, 414, 416, 418, 419, 420, 423, 424, 429, 431
Integers a such that a ≥ 2 and O(a) > O(a−1) where O(b) is the number of OEIS sequences (in stripped.gz
) b occurs in.
This sequence is finite. Only the first 200 terms are shown.
Numbers much more interesting than the preceding one
64, 96, 100, 120, 139, 144, 149, 156, 160, 167, 173, 179, 191, 196, 199, 204, 208, 210, 216, 220, 223, 227, 229, 231, 233, 239, 240, 243, 250, 251, 255, 256, 260, 263, 269, 271, 277, 280, 283, 285, 288, 293, 297, 300, 307, 311, 313, 315, 317, 320, 324, 330, 331, 333, 336, 340, 343, 347, 349, 353, 357, 359, 360, 364, 367, 373, 375, 379, 383, 389, 392, 396, 397, 399, 400, 405, 408, 409, 416, 419, 420, 429, 431, 439, 441, 443, 448, 449, 455, 457, 459, 461, 467, 479, 483, 484, 486, 487, 490, 491, 495, 499, 503, 504, 509, 511, 512, 520, 521, 523, 525, 528, 532, 539, 540, 544, 546, 547, 550, 552, 555, 557, 560, 563, 567, 569, 571, 575, 576, 585, 587, 592, 593, 599, 605, 607, 610, 612, 613, 615, 616, 617, 619, 624, 625, 629, 630, 636, 640, 641, 643, 647, 650, 653, 656, 659, 663, 665, 666, 671, 672, 675, 676, 680, 682, 683, 688, 691, 693, 696, 700, 701, 707, 709, 713, 714, 719, 720, 726, 727, 729, 733, 735, 739, 741, 743, 747, 750, 751, 756, 759, 760, 761, 765, 767, 768, 773, 775, 777, 780
Integers a such that a ≥ 2 and O(a) > 1.2×O(a−1) where O(b) is the number of OEIS sequences (in stripped.gz
) b occurs in.
This sequence is finite and a subset of the previous sequence. Only the first 200 terms are shown.
Numbers with their own sequence
1019, 351351, 509203, 2236081408416666, 62527434837271029229, 5000060065066660656065066555556, 316912650057057350374175801344000001, 9159655941772190150546035149323841107741493742816721, 1414213562373095048801688724209698078569671875376948073
Positive integers a such that there is an OEIS sequence (in stripped.gz
) that contains a once and nothing else.
This sequence is finite. The complete sequence is shown.
Sequences containing their own A-number
1, 2, 3, 5, 6, 8, 10, 14, 16, 26, 27, 36, 37, 52, 59, 62, 69, 72, 115, 134, 1357, 6457, 24476, 46655, 94793, 181476
Positive integers a such that the OEIS sequence with A-number a (in stripped.gz
) contains a.
Example: 134 is in the sequence because A000134 contains the number 134.
This sequence is finite. The complete sequence is shown.
Numbers whose distance to their nearest neighbour sets a record
1, 39740, 68564, 95936, 113808, 177617, 197181, 223860, 275091, 296928, 319039, 352040, 387240, 490700, 568664, 583609, 653880, 1087301, 1168453, 1368400, 1439280, 1552945, 1630447, 1810297, 2188076, 2278454, 2596184, 3122604, 3215316, 4066709, 4727014, 5127670, 5233837, 5690787, 5881680, 5907791, 6573241, 7229839, 7306737, 7404324, 8919816, 10429164, 10843875, 11216480, 12907980, 16447329, 17823544, 18717687, 20416150, 23216640, 25323961, 26257328, 29922102, 32562152, 32776380, 46073737, 48709705, 55385589, 62795761, 76242173, 82538994, 83235005, 162860081, 172402396, 227736432, 231625525, 231663025, 237810937, 296810944, 419077220, 446828435, 480140787, 515754252, 523226617, 547508416, 584849259, 585555531, 605223135, 708767060, 818558424, 822018048, 894087011, 1022041020, 1212780625, 1474533632, 1676056044, 1776832243, 1905530913, 2013680076, 2157788063, 2736999545, 2841382379, 4224034452, 4323822892, 4713421981, 5943057120, 7916042111, 8080808080, 9282708868, 10139372451
a is the smallest positive integer such that
a is in the OEIS (in stripped.gz
) and |a−k| is greater than for any previous a,
where k is the number closest to but not equal to a in the OEIS (in stripped.gz
).
Example: the second term is 39740 because it occurs in the OEIS but 39739 or 39741 do not and 39740 is the smallest such number.
This sequence is finite. Only the first 100 terms are shown.