My non-serious integer sequences

Introduction

Integer sequences created by me that would not make it to the On-Line Encyclopedia of Integer Sequences (OEIS). All of these sequence will change over time (that's the joke).

The Python programs require the file stripped.gz from the OEIS. Date of stripped.gz used for creating these sequences: 4 September 2025 or newer.

You can also download all the Python programs.

The sequences

The uninteresting numbers

20990, 22978, 23543, 23735, 24085, 24159, 24555, 26301, 26673, 26708, 27266, 27765, 27815, 27988, 28330, 28353, 28427, 28466, 28869, 28946

The smallest positive integers that do not occur in any OEIS sequence (in stripped.gz).

This sequence is infinite. Only the first 20 terms are shown.

Python program

Greater of uninteresting number pairs

719, 753, 774, 787, 817, 823, 830, 830, 830, 835, 835, 843, 845, 850, 850, 853, 854, 860, 861, 863

Get pairs of positive integers (m, n) such that m < n and no OEIS sequence (in stripped.gz) contains both m and n. Sort the pairs first by n, then by m. This sequence has the values of n.

This sequence is infinite. Only the first 20 terms are shown.

Python program

Lesser of uninteresting number pairs

556, 266, 573, 536, 540, 690, 613, 669, 713, 526, 574, 476, 552, 419, 764, 722, 712, 443, 677, 462

Get pairs of positive integers (m, n) such that m < n and no OEIS sequence (in stripped.gz) contains both m and n. Sort the pairs first by n, then by m. This sequence has the values of m.

This sequence is infinite. Only the first 20 terms are shown.

Python program

The uninteresting consecutive numbers

20990, 1319, 988, 675, 574, 573, 388, 383, 382, 381, 380, 379, 378, 296, 295, 294, 255, 254, 253, 252

The n'th term is the smallest positive integer such that no OEIS sequence (in stripped.gz) contains all n consecutive integers starting from it.

Example: the third term is 988 because 988, 989 and 990 are the smallest three consecutive positive integers such that no OEIS sequence contains all of them.

This sequence is infinite. Only the first 20 terms are shown.

Python program

The uninteresting numbers by index

395, 692, 1286, 1658, 3063, 3063, 3063, 5575, 5707, 6614, 7402, 7871, 9342, 9342, 9342, 9342, 9342, 12129, 12802, 12802, 13551, 13864, 13864, 15369, 15462, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 16550, 19150, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990, 20990

The n'th term is the smallest positive integer that does not occur among the first n terms of any OEIS sequence (in stripped.gz).

Example: the second term is 692 because it is the smallest positive integer that does not occur before the third term in any OEIS sequence.

This sequence is finite. The complete sequence is shown.

Python program

Numbers more interesting than the preceding one

15, 16, 20, 23, 24, 27, 28, 30, 35, 36, 40, 45, 47, 48, 52, 53, 55, 56, 59, 60, 63, 64, 66, 70, 71, 72, 75, 78, 79, 80, 83, 84, 88, 89, 90, 96, 99, 100, 103, 105, 107, 108, 112, 116, 117, 119, 120, 124, 125, 126, 127, 128, 130, 131, 135, 136, 137, 139, 140, 143, 144, 147, 148, 149, 151, 156, 157, 159, 160, 162, 163, 165, 167, 168, 173, 175, 176, 178, 179, 180, 184, 186, 189, 191, 192, 195, 196, 197, 199, 204, 207, 208, 210, 214, 216, 220, 222, 223, 225, 227, 229, 231, 233, 238, 239, 240, 243, 245, 248, 250, 251, 252, 255, 256, 260, 263, 269, 271, 275, 276, 277, 279, 280, 281, 283, 285, 286, 288, 292, 293, 296, 297, 299, 300, 303, 304, 306, 307, 310, 311, 313, 315, 317, 319, 320, 323, 324, 328, 329, 330, 331, 333, 335, 336, 337, 340, 341, 343, 347, 349, 351, 353, 355, 357, 359, 360, 363, 364, 367, 369, 371, 372, 373, 375, 377, 378, 379, 383, 384, 389, 392, 395, 396, 397, 399, 400, 403, 405, 408, 409, 413, 414, 416, 418, 419, 420, 423, 424, 429, 431

Integers a such that a ≥ 2 and O(a) > O(a−1) where O(b) is the number of OEIS sequences (in stripped.gz) b occurs in.

This sequence is finite. Only the first 200 terms are shown.

Python program

Numbers much more interesting than the preceding one

64, 96, 100, 120, 139, 144, 149, 156, 160, 167, 173, 179, 191, 196, 199, 204, 208, 210, 216, 220, 223, 227, 229, 231, 233, 239, 240, 243, 250, 251, 255, 256, 260, 263, 269, 271, 277, 280, 283, 285, 288, 293, 297, 300, 307, 311, 313, 315, 317, 320, 324, 330, 331, 333, 336, 340, 343, 347, 349, 353, 357, 359, 360, 364, 367, 373, 375, 379, 383, 389, 392, 396, 397, 399, 400, 405, 408, 409, 416, 419, 420, 429, 431, 439, 441, 443, 448, 449, 455, 457, 459, 461, 467, 479, 483, 484, 486, 487, 490, 491, 495, 499, 503, 504, 509, 511, 512, 520, 521, 523, 525, 528, 532, 539, 540, 544, 546, 547, 550, 552, 555, 557, 560, 563, 567, 569, 571, 575, 576, 585, 587, 592, 593, 599, 605, 607, 610, 612, 613, 615, 616, 617, 619, 624, 625, 629, 630, 636, 640, 641, 643, 647, 650, 653, 656, 659, 663, 665, 666, 671, 672, 675, 676, 680, 682, 683, 688, 691, 693, 696, 700, 701, 707, 709, 713, 714, 719, 720, 726, 727, 729, 733, 735, 739, 741, 743, 747, 750, 751, 756, 759, 760, 761, 765, 767, 768, 773, 775, 777, 780

Integers a such that a ≥ 2 and O(a) > 1.2×O(a−1) where O(b) is the number of OEIS sequences (in stripped.gz) b occurs in.

This sequence is finite and a subset of the previous sequence. Only the first 200 terms are shown.

Python program

Numbers with their own sequence

1019, 351351, 509203, 2236081408416666, 62527434837271029229, 5000060065066660656065066555556, 316912650057057350374175801344000001, 9159655941772190150546035149323841107741493742816721, 1414213562373095048801688724209698078569671875376948073

Positive integers a such that there is an OEIS sequence (in stripped.gz) that contains a once and nothing else.

This sequence is finite. The complete sequence is shown.

Python program

Sequences containing their own A-number

1, 2, 3, 5, 6, 8, 10, 14, 16, 26, 27, 36, 37, 52, 59, 62, 69, 72, 115, 134, 1357, 6457, 24476, 46655, 94793, 181476

Positive integers a such that the OEIS sequence with A-number a (in stripped.gz) contains a.

Example: 134 is in the sequence because A000134 contains the number 134.

This sequence is finite. The complete sequence is shown.

Python program

Numbers whose distance to their nearest neighbour sets a record

1, 39740, 68564, 95936, 113808, 177617, 197181, 223860, 275091, 296928, 319039, 352040, 387240, 490700, 568664, 583609, 653880, 1087301, 1168453, 1368400, 1439280, 1552945, 1630447, 1810297, 2188076, 2278454, 2596184, 3122604, 3215316, 4066709, 4727014, 5127670, 5233837, 5690787, 5881680, 5907791, 6573241, 7229839, 7306737, 7404324, 8919816, 10429164, 10843875, 11216480, 12907980, 16447329, 17823544, 18717687, 20416150, 23216640, 25323961, 26257328, 29922102, 32562152, 32776380, 46073737, 48709705, 55385589, 62795761, 76242173, 82538994, 83235005, 162860081, 172402396, 227736432, 231625525, 231663025, 237810937, 296810944, 419077220, 446828435, 480140787, 515754252, 523226617, 547508416, 584849259, 585555531, 605223135, 708767060, 818558424, 822018048, 894087011, 1022041020, 1212780625, 1474533632, 1676056044, 1776832243, 1905530913, 2013680076, 2157788063, 2736999545, 2841382379, 4224034452, 4323822892, 4713421981, 5943057120, 7916042111, 8080808080, 9282708868, 10139372451

a is the smallest positive integer such that a is in the OEIS (in stripped.gz) and |ak| is greater than for any previous a, where k is the number closest to but not equal to a in the OEIS (in stripped.gz).

Example: the second term is 39740 because it occurs in the OEIS but 39739 or 39741 do not and 39740 is the smallest such number.

Python program

This sequence is finite. Only the first 100 terms are shown.